
Design and implementation of a cooperative multimedia environment with
QoS control1

Marco Alfano*

Centre for Communication Studies ‘Anghelos’, Via Pirandello, 40-90144 Palermo, Italy

Abstract

The spread of distributed multimedia applications is setting forth a new set of challenges in the management of host and network resources
for guaranteeing QUALITY AND SERVICE (QoS). When the multimedia applications compete for resources, as in the case of a cooperative
multimedia environment, the management task becomes even more difficult.We have developed a cooperative multimedia environment
(CME) that manages multimedia services and the underlying resources in an integrated way. Each user is provided with a single interface to
invite other users to a cooperative session, select the media services to be used in the session, and specify his QoS requirements for the media
services throughout the session. In this work, we describe the architectural details of the CME and its components with particular emphasis on
the QoS mapping and QoS control mechanism. We also present the design and implementation details of an experimental prototype that
provides video, audio and white board services.q 1998 Published by Elsevier Science B.V.

Keywords:QUALITY AND SERVICE; Multimedia; Application sharing

1. Introduction

Distributed multimedia applications are constantly grow-
ing in popularity thanks also to the presence of a widespread
network like the Internet. Particular attention has been
addressed towards real-time and interactive applications,
e.g. videoconferences and shared applications, mainly
because of the worldwide and decentralized features of
today’s research and development organizations.

A cooperative multimedia environment allows users to
work remotely on common projects by sharing applications
(e.g. CAD tools, text editors, white boards) and simulta-
neously communicate audiovisually. In order for a coopera-
tive multimedia environment to be widely used, it should
utilize the same system resources (hosts and networks) that
users have normally available (e.g. PCs, workstations, Inter-
net). However, this entails that the same environment has
to be shared by multimedia applications with strict require-
ments (e.g. real-time) and other applications that do not
have comparably strict performance. Presently, there is no

globally available mechanism for managing system
resources that discriminates among applications privileg-
ing, for example, the real-time ones. Moreover, different
policies are used to manage different resources and the
management of the different resources is often not coordi-
nated, particularly when the resources are distributed. The
relative importance of different applications is seldom con-
sidered in a uniform way across the system resources.

Several dedicated applications (e.g. the MBone tools
[1–3]) exist for transmitting video, audio and data between
users. While on one hand these applications have the advan-
tage of working in a widespread environment like the Inter-
net, on the other hand they are usually highly demanding
in terms of both network and host resources and may not
get enough resources to work properly. Furthermore, if the
user is using more applications at the same time there is no
direct way for him to privilege an application over another.

In this paper, we present the architectural details and
the experimental prototype of a cooperative multimedia
environment (CME) that we have developed in order to
help the user to set-up and control a cooperative multimedia
session in an integrated way. The paper is organized as
follows. Section 2 presents the architecture of the CME.
Sections 3 and 4 respectively present the QoS mapping
and QoS control mechanism. Section 5 presents an experi-
mental prototype of the CME that provides video, audio and

Computer Communications 21 (1998) 350–361

COMCOM 1333

0140-3664/98/$19.00q 1998 Published by Elsevier Science B.V.
PII S0140-3664(97)00168-0

* E-mail: Marco.Alfano@cselt.it
1A previous version of this paper has appeared in: M. Alfano, R. Sigle.
Controlling QoS in a collaborative multimedia environment. Proc. of the
Fifth IEEE International Symposium on High Performance Distributed
Computing (HPDC-5) Aug. 7–9, 1996, Syracusae NY.

white board services. Section 6 presents the results of a first
set of experiments carried out on the experimental proto-
type. Finally, Section 7 presents some conclusions and a
discussion on the future work.

2. The CME architecture

In order to create an integrated environment for coopera-
tive work, we have developed a CME that realizes an effi-
cient use of resources while providing the user with a single
interface to easily start a cooperative session and control
the QoS parameters of each media during the session. Our
CME consists of cooperative multimedia applications, one
for each user (Fig. 1).

A COoperative MultiMedia Application (COMMA) is
made up of the following components.

• A media service for each media (e.g. video service).
Each media service provides basic functions (e.g. send-
ing, receiving and displaying video frames) and interacts
with devices (or servers controlling devices) in its media
category.

• A connection manager for establishment and disconnec-
tion of cooperative sessions. During session establish-
ment, other users are invited to join the session. Since
any connection manager can initiate a cooperative
session, the cooperative session does not rely on any
centralized session moderator but is based on a distrib-
uted peer-to-peer model.

• A QoS mapper/controller that translates user QoS
requirements into parameters for the media services

and into QoS requirements for the underlying resources
(i.e. host and network resources). It also executes the
control mechanism in order to satisfy the user require-
ments on the media services.

• A resource monitor/controller of those host and network
resources used to provide the different media services.

• A service manager for starting and stopping user-
requested media services for the session. The service
manager also monitors and changes the service para-
meters (e.g. video frame rate) following the indication
of the QoS mapper/controller.

• A user interface that provides a graphical interface for
starting or joining a cooperative session. Through this
interface, a user can specify the media services he wants
to use in the session and change his QoS requirements on
the services.

• A user who wants to start a cooperative session specifies,
through the graphical interface, the addresses of the users
he wants to invite to the session and the media services to
be used. The connection manager contacts the invited
users who receive a message containing the name of the
inviting person and decide whether to accept or refuse to
join the session. When this set-up phase has been com-
pleted, the service managers at the different hosts start the
provision of the chosen media services with some default
values and the cooperative session takes place.

During the cooperative session, a user can change his
QoS requirements on the media services. QoS requirements
at user level are specified by means of simple attributes
(e.g. low, medium and high quality video). These ‘high-
level’ attributes are translated by the QoS mapper/controller

Fig. 1. The CME architecture.

351M. Alfano/Computer Communications 21 (1998) 350–361

into parameters for the media services and into QoS
requirements for the underlying resources. Thus, depending on
the user requests for the media services, the QoS mapper/
controller decides the performance parameters for the
services (e.g. sending video at 10 fps) and evaluates through
the resource monitor/controller whether these parameters can
be supported by the underlying resources. Finally, the QoS
mapper/controller makes the necessary adjustments so that
the media services can perform as planned.

In Sections 3 and 4 we describe the QoS mapping and
QoS control mechanism in detail.

2.1. Integration aspects of the CME architecture

One of the main goals of the CME architecture is to
realize an integrated environment while keeping the advan-
tages of using a distributed heterogeneous environment.
Thus, the CME architecture presents a horizontal integra-
tion that operates exclusively within a certain layer and a
vertical integration that spans the different layers. Horizon-
tal integration embraces all sites of a cooperative environ-
ment, whereas vertical integration only operates within one
site. Fig. 2 illustrates the integration aspects addressed by
the CME architecture.

Vertical integration interrelates user, application and
resource layers. The connection between the different layers
is achieved by introducing mapping mechanisms. User QoS
requirements are translated in media service parameters and
resource requirements.

Horizontal integration is a result of the distributed struc-
ture of the CME architecture and, as said above, operates
exclusively within a certain layer. User layer integration is
achieved by offering a user the possibility to specify
quality requests for the employed media services. As will
be shown in the following sections, our prototypical
implementation, for example, includes a control panel that
allows users to specify their quality requirements for the
media services in a uniform way. Integration at the media
service layer is achieved by embedding the media services
into the CME architecture. This specifically means that
applications are not handled independently any more.
Integration at the resource layer is achieved by providing
mechanisms for the orchestration between host and
network resources and their management structure. The
CME architecture accomplishes horizontal integration at
the resource layer by taking the different resource para-
meters into account. Monitor and control mechanisms
keep track of resource status and availability and prevent
resource saturation. The knowledge at the same time of
resources availability and user requirements allows the
CME to assign resources to the media services more accu-
rately and efficiently.

2.2. Related work

The need for integration within a specific layer

(user, application, resource) and between layers has been
addressed by several research groups [3–8]. Integration
efforts of other research groups differ from the integration
approach of the CME architecture in that they mainly cover
only a specific integration field. This section provides a few
examples of such integration efforts.

The MBone tool developers have introduced several
media service synchronization mechanisms to address
the problem of horizontal integration [3]. Cross-media
synchronization is carried out over a conference bus. The
conference bus abstraction provides a mechanism which
coordinates the separate media service processes. In
Ref. [8], a local control architecture ties together media
agents, controllers and auxiliary applications, such as
media recorders and management proxies, into a single
conference application. The conference controllers and
media agents (in our terminology referred to as media
services) communicate by sharing a message replicator.
This approach is similar to the MBone conference bus
and is mainly employed to establish horizontal integration
at the application layer. User interface integration can be
found in the multimedia communication exchange server
(MMCX) [5] where team members get together in a virtual
meeting room. Along with providing a visual representation
of the virtual meeting, MMCX combines multimedia
calling features with collaboration tools to allow users to
add or drop media services. The QoS Broker approach [6]
addresses the relationship between various resource
types (mainly operating system and network resources)
and provides an architecture for horizontal resource inte-
gration in the resource layer. Processing capacity is
managed in concert with networking to deliver guaranteed
behavior to applications. Furthermore, the QoS Broker
integrates mapping aspects by offering an appropriate
scheme to convert application QoS parameters into network
QoS requirements and vice versa. A QoS architecture for
media specific and transport level QoS handling is introduced
in Ref. [4]. A negotiation and resource reservation protocol
(NPR) for multimedia applications allows QoS negotiation
and resource reservation. As an application level protocol, it
offers transparency from the underlying transport layer struc-
ture. In Refs. [9,10] two different approaches for guaranteed
resource reservation at the network level are presented. In Ref.
[11], resource reservation is also discussed, but from the point
of view of host resources.

3. QoS mapping

Since this architecture is oriented towards the end
user, he must be able to express his QoS requirements
for the media services in a simple way (e.g. low, medium,
or high quality video). These requirements, as shown in
Fig. 2, will then be translated on one hand into para-
meters for the media services (e.g. frame rate for video)
and, on the other hand, in QoS requirements for the

352 M. Alfano/Computer Communications 21 (1998) 350–361

underlying resources. As said above, the architecture
component that provides the QoS translation at the different
levels is the QoS mapper/controller.

Let us now examine how QoS requirements can be
expressed at different levels. At the user level, QoS require-
ments can be grouped into two categories:

• direct requirements, when the user explicitly specifies a
requirement for a media service, e.g. he asks for high
quality video;

• indirect requirements, when the user makes some
actions, such as iconifying a video window, that indir-
ectly makes suggestions about the user interest on a
particular media service (in the case of iconifying a
video window, the user shows no interest for that video).
While the user actions that lead to indirect requirements
can be detected by examining the user environment and
the way he interacts with it (e.g. iconifying or deiconify-
ing a window and putting a window in background),
more effort is required to define direct requirements. A
direct requirement should be, at the same time, easy to
understand for the user, general enough to include more
particular requirements (so that the user is not required
to specify too many requirements), and tractable so that
it can be translated in QoS requirements for the under-
lying resources.

A proper way to express user requirements entails a
detailed analysis on how a user expects a media service to
behave more or less properly and how the satisfaction of
the user for the media service quality can be expressed in
quantitative terms. In what follows, we present the first
results of an analysis on user requirements that we have
been carrying out.

In order for the user not to deal with too many
parameters, we define only one global requirement for
each media and we indicate it with the generic term of
quality. Thus, we will have video quality, audio quality
and so forth. The quality requirement is a repository of

more specific requirements on a media service. For exam-
ple, video quality is intended in a broader sense than just
considering how good received video pictures are compared
to the original ones. This is, of course, part of video quality
and is related to spatial vision but there is also temporal
vision that must be taken into account, i.e. how the user
perceives scene changes in the received video compared
to the original one [12].

Many studies in the literature dealing with quality estima-
tion of digitally coded video sequences [12,13] and audio
sequences [14,15] use a five-level scale, reported in Table 1,
for quality rating. This scale is also used for subjective
testing in the engineering community [16].

We use the same five-level scale to define the quality of a
media service and we give the user the possibility to specify
one of these levels as a way to express his requirements.
In the case of video, this scale is used to assess quality for
both spatial and temporal perception [12]. In practice, the
user will use a slider for each media service to indicate
his quality requirements from a minimum value (quality
level 1) to a maximum value (quality level 5).

Once the way to express user requirements has been
defined, the next problem is to find a mapping between user
requirements (quality levels) and parameters of the media
services. The question is, what is the performance a media
service must have in order to provide a certain quality level?
We need some mapping functions that connect, for example,
video quality to video frame rate. These functions are similar
to the benefit functions found in Ref. [17] and require the

Fig. 2. Horizontal and vertical integration of the CME architecture.

Table 1
Quality rating on a one to five scale

Rating Impairment Quality

5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

353M. Alfano/Computer Communications 21 (1998) 350–361

execution of subjective tests in order to determine whether for
a given performance the user perceives the quality level of the
media service as bad, poor, fair, good, or excellent.

We executed some tests with a group of ten people and
asked them to rate the quality of video and audio sequences
according to the one to five scale discussed above. As a
video application, we used vic [3] and as an audio appli-
cation, we used vat [1]. In the first test, we showed a video
sequence at different frame rates in order to evaluate
the temporal quality of video. First, we showed the video
sequence at 30 fps. We told the viewers to consider the
quality of that video sequence to be five and to rate the
quality of the next video sequences against that one. In
the second test, we showed a video sequence with different
resolutions in order to evaluate the spatial quality of video.
First, we showed the video sequence with the best resolution
the video application could provide. Again, we told the
viewers to consider the quality of that video sequence to
be five and to rate the quality of the next video sequences
against that one. We then varied the resolution as a percent-
age of the best provided resolution. As a final test, we trans-
mitted an audio stream with different encoding schemes in
order to evaluate the audio quality. The PCM encoding
scheme was considered to provide quality five.

We averaged the obtained results and built the tables that
map the quality levels to the service parameters. The results
of this mapping are reported in Table 2 for video and in
Table 3 for audio.

The third and final step in QoS mapping is to translate
the media service parameters in QoS requirements for the
host and network resources. Different resource parameters
can be connected with the performance of a media service.
For simplicity, we consider QoS requirements for the
following resource parameters:

• Network resources {bandwidth (Kb s¹1)};

• Host resources {CPU type, CPU load (%)}.

For video, it is very difficult to correlate media service
performance and requirements on resources. Network band-
width and mainly CPU utilization are very influenced by the
frame size (assuming the user has the possibility to change
the video size), compression scheme, and degree of move-
ment (slow or rapid scene changes).

Considering the mapping between the quality levels and
the media service parameters discussed above, we estimated
the resources that are needed to obtain the different
quality levels. The bandwidth was provided by the vic and
vat applications while the CPU usage was measured with
the Unix top utility. The results of these measurements are
reported in Table 4 for video and in Table 5 for audio. For
video, we estimated the necessary resources for receiving
JPEG video (3203 240). For each quality level, we con-
sidered three possible degrees of movement, i.e. still, slow
motion, and high motion. As a receiving host, we used a
Suny sparc5.

4. The QoS control mechanism

The user who starts the cooperative session chooses the

Table 2
Video quality rating for JPEG video

Quality Frame rate (fps) Resolution (%)

5 25–30 65–100
4 15–24 50–64
3 6–14 35–49
2 3–5 20–34
1 1–2 1–19

Table 3
Audio quality rating

Quality Encoding scheme

5 PCM
5 PCM2
5 PCM4
4 DVI
4 DVI2
4 DVI4
3 GSM
2 LPC4

Table 4
Mapping of video quality to resources for JPEG video

Quality Degree of
movement

Frame
rate
(fps)

Resolution
(%)

Bandwidth
(Kb s¹1)

Used
CPU
(%)

5 High motion 25 65 1700 . 100
5 Slow motion 25 65 1650 . 100
5 Still 25 65 1600 49
4 High motion 15 50 840 . 100
4 Slow motion 15 50 820 69
4 Still 15 50 800 37
3 High motion 6 35 270 38
3 Slow motion 6 35 260 34
3 Still 6 35 260 21
2 High motion 3 20 102 16
2 Slow motion 3 20 102 14
2 Still 3 20 100 7
1 High motion 1 1 17 6
1 Slow motion 1 1 16 6
1 Still 1 1 16 5

Table 5
Mapping of audio quality to resources

Quality Encoding scheme Bandwidth
(Kb s¹1)

Used CPU
(%)

5 PCM 68 , 1
5 PCM2 66 , 1
5 PCM4 64 , 1
4 DVI 38 ,1
4 DVI2 35 ,1
4 DVI4 34 ,1
3 GSM 15 ,26
2 LPC4 7 ,11

354 M. Alfano/Computer Communications 21 (1998) 350–361

media services to be used for that session. The media
services are started with some default values and each
participant is presented with a graphical interface that
contains information on the media services used in the
session (Fig. 3). For each media service there is a meter
that goes from zero to five and indicates the quality of
that service. Level zero indicates that the service is not
being received.

The service manager monitors the media services and
reports the values of the service parameters to the QoS
mapper/controller, which in turn translates these values to
quality levels and passes them to the graphical interface for
displaying. If a quality level is connected with more than
one service parameter, the QoS mapper/controller uses
the following expression to compute a single value for the
service quality (Service_Q):

Service_Q¼ a1Q1 þa2Q2 þ … þ anQn

whereQi is the quality level obtained for parameterPi; a i

is a weight indicating the relative importance ofPi for
Service_Q and is related to the subjective interest of the
user towards a parameter rather than another;a1 þ a2 þ

… þ an ¼ 1.
For a video service, for example, we will have:

Video_Q¼ a1 frame_rateþ a2 resolution

Normally, a user will not use all the media services involved
in a cooperative session at the same time. For example, at
the beginning of a cooperative session, a user usually wants
to see and talk to the other participants in order to exchange
the basic ideas on the common work and decide how to
proceed with it. Once started working on a common text/
picture, the interests of the users are mainly directed to the
shared application. Users are not too interested in seeing
each other any more, but they do want to keep talking to
each other. Thus, user interests on the different media

services are likely to change over time during a cooperative
session.

The graphical interface provides an easy way to express
user requirements by means of a slider that allows specifi-
cation of the quality level for each media service. The slider
moves in a discrete way and the user may specify any of
the five levels that correspond to the five quality levels dis-
cussed above. In addition, specifying zero, the user indicates
that he does not want to receive that service. An indirect
requirement, as iconifying a video window, will have the
same effect as to move the slider to zero.

The indication of the slider is two-fold:

• it indicates the quality the user wishes to perceive for
that media service;

• it indicates the interest of the user for that service com-
pared to the other services by assigning a priority to
the service. The priority corresponds to the quality
level with five being the highest priority and zero
being the lowest.
If a pricing policy is applied to the used resources, the
quality requirements (properly converted) will indicate
how much a user is willing to pay for the different media
services. Thus, in this case, the slider mechanism allows the
user to save money for a particular media service when the
quality of that service does not have a particular relevance.

The control mechanism, in trying to satisfy the user
requirements, will establish a priority list of services
based on the assigned priorities and will privilege more
those services with higher priorities. The control mechanism
will be activated when the quality level chosen by the user
differs from the actual value supplied by the system beyond
a threshold for a given time interval (to avoid having con-
tinuous control activity). This may happen because the user
changes his requirements on a media service either directly
through the slider or indirectly, e.g. iconifying a video

Fig. 3. User interface for managing a cooperative session.

355M. Alfano/Computer Communications 21 (1998) 350–361

window. Moreover, the status of the resources may not
allow a media service to perform in a way that is even
close to the quality level requested by the user. The control
mechanism will try either to change the media-service para-
meters or to reassign the resources so to satisfy the user
requirements. To this end, it monitors the status of the
host and network resources through the resource monitor/
controller.

We can consider different scenarios depending on to what
extent the resource monitor/controller can control resources.
If it is able to reserve both network and host resources, the
QoS mapper/controller will recompute the service priorities
and, based on these priorities, will reassign resources to
services trying to guarantee the quality of the services
with higher priorities. A user requirement then becomes
an objective for the whole system that should properly act
in order to satisfy this requirement [18].

If a CME has to make use of a world-wide network like
the Internet, it must be considered that, presently, the Inter-
net does not provide any globally available mechanism
which discriminates among applications and manages the
network as a whole. A more realistic scenario then assumes
that the resource monitor/controller can partially control
resources, i.e. it can control host resources but not network
resources. Hosts usually belong either to users or to institu-
tions where users work. This means that users (or system
administrators who act on users’ behalf) can directly access
host resources. On the other hand, users and system admin-
istrators cannot control the resources of the networks
through which the data of the cooperative session flow,
unless all the participants are in the same local network.
Thus, the particular assumption that users can only control
their host resources seems quite reasonable.

In this scenario, when the QoS mapper/controller
observes a disequilibrium between the request of the user
and the achieved performance of a media service, it will try
to understand whether the system resources are not suffi-
cient or the problem is caused by a wrong setting of the
service parameters. Let us consider, for example, the case
where the service meter indicates that a media service is
performing with a lower quality level than the one requested
by the user. The control mechanism first checks whether
the reason of poor performance of a media service is related
to the underlying resources that, for example, get saturated.
In this case, the control mechanism determines whether
the problem is either in the network or in the host. If the
problem is the host CPU, the control mechanism reassigns
the CPU resources in order to increase the performance of
that service while, at the same time, respecting the priorities
of the services. If the problem lies in the network or the CPU
is not powerful enough to support the service require-
ments, the QoS mapper/controller asks its peer on the send-
ing site to lower the parameters of the media service. In
fact, as shown in Ref. [19], sometimes decreasing the values
of the service parameters on the sending site may entail a
better performance of the service on the receiving site and

consequently a higher quality for the user. For example, if
JPEG video is sent through a network and this network
becomes congested, as soon as a packet is dropped in the
network a whole frame will be discarded on the receiving
side. This may entail a remarkable difference between the
sending and received frame rate. In this case, an increase in
the sending frame rate will probably cause the network to
become even more congested, whereas a decrease in the
sending frame rate will more likely lead to an increase in
the received frame rate and, in turn, a better quality (unless
the network is already congested by other applications, but
even in this case the received frame rate practically does
not change).

Whenever the QoS mapper/controller of a sending site
receives a request from its peer on a receiving site for either
increasing or decreasing the value of the parameters of a
media service, it will behave differently depending on
whether the cooperative session is between two users or
more. In the former case, the sending site will immediately
act upon the request of the receiving site. In the latter case,
the sender will take into account the requests of all sites and
will make an average of them. It then will act considering
the averaged value.

If the user requires either directly or indirectly quality
zero for a media service, the QoS mapper/controller will
ask the service manager to stop temporarily receiving that
media service and will inform its peer on the sending site
that it is not interested in receiving that service. As soon as
the QoS mapper/controller of a sending site realizes that
nobody is interested in receiving a service, it will stop
temporarily transmitting the related media stream, thus
avoiding a useless waste of resources.

For implementation reasons, we have split the control
mechanism into two parts. A global mechanism (Fig. 4)
works on the sending site and checks for potential differ-
ences between the sending qualityS and the requested
quality R computed with the following expression:

R¼
1
n

∑n

i
Ri

whereRi is the requested quality for userUi (i ¼ 1, …, n).
If the global control mechanism senses a disequilibrium,

Fig. 4. Global control mechanism.

356 M. Alfano/Computer Communications 21 (1998) 350–361

it will verify whether there are losses in the host or in the
network and will behave accordingly. On the receiving host,
a local control mechanism checks if there are losses locally
and in this case it will try to redistribute the host resources
taking into account the priorities of the media services.

5. The COMMA experimental prototype

In order to evaluate the architectural framework of the
CME presented in the previous sections, we have imple-
mented an experimental prototype. The COMMA prototype
accomplishes the main architectural goals. It performs the
following functions:

• allows a user to specify QoS requirements for the media
services;

• adjusts the media services performance dynamically
depending on the user requirements and resource status;

• monitors and controls the resources.
The prototype has been implemented by using the Sun
Solarisy operating system. The programming environ-
ment comprises theansi-c [20] and tcl/tk [21] pro-
gramming languages. For storage of persistent data
and for interprocess communication within one system,
the relational database MiniSQL [22] has been
employed. Finally, for interprocess communication
between processes on different systems, the Berkeley
socket paradigm [23] has been used.

In order to work in a generic environment, the experi-
mental prototype considers a resource scenario where
neither the network nor the host offer any QoS guarantees,
i.e. hosts with the Unix operating system and the Internet
as the communication network. However, the flexibility of
the CME architecture allows one to extend the prototype
in order to include different resource scenarios.

The host and network resource properties can be

described as follows. Processes residing on a participant’s
host offer a time sharing capability. This specific property
allows for changing process priorities but does not offer any
absolute QoS guarantees. The network resources in turn do
not offer any QoS guarantees since the employed media
services are based on the IP network protocol.

As already discussed in Section 2, each session partici-
pant runs a COMMA. In the prototype, a COMMA is made
up of a set of processes as depicted in Fig. 5, namely a
resource monitor/controller, the COMMA database, a set
of media services, a set of adjacent media service monitors
and a process that contains the connection manager, the
QoS mapper/controller, the service manager and the user
interface.

We now briefly describe each COMMA component. A
complete description of the COMMA prototype can be
found in Ref. [19].

5.1. The COMMA database

All COMMA components exchange their data through
the COMMA database which consists of a set of tables
that are mainly employed to store monitored information
and to register the invoked media services and the corres-
ponding monitors. The COMMA prototype uses Mini
SQL [22] as a database engine. Mini SQL, or mSQL, is a
lightweight relational database engine designed to pro-
vide fast access to stored data with low memory require-
ments. As its name implies, mSQL offers a subset of
SQL as its query interface in accordance with the ISO-
SQL specification [24]. The most important property of
mSQL with regard to the COMMA prototype is itsc
language API. The API allows anyc program to commu-
nicate with the database engine through the msqld database
daemon. The API and the database engine have been
designed to work in a client/server environment over a
TCP/IP network.

Fig. 5. Process oriented view of a COMMA.

357M. Alfano/Computer Communications 21 (1998) 350–361

5.2. Media services — MBone tools

The COMMA prototype uses, as media services, the
MBone tools developed at the UC Berkeley and Lawrence
Berkeley National Laboratory, i.e. the video tool vic [3] for
video, the audio tool vat [1] for audio and the white board
tool wb [2] as a white board.

The vic and vat applications are based on the draft Inter-
net standard real-time transport protocol (RTP) [25] devel-
oped by the IETF Audio/Video Transport working group.
RTP is an application-level protocol implemented entirely
within the application.

5.3. Media service monitors

The media service monitors retrieve information directly
from the media services. For each media service, a corre-
sponding media service monitor is launched. Each media
service monitor is an independent process that periodically
polls information from its media service and writes it into
the COMMA database.

The most essential design issue for the media service
monitors, is to retrieve the desired information without
modifying the source code of the media services. The
MBone tools include two properties that allow us to
monitor them without modifying their source code; they
employ the RTP application-level protocol and offer a
tcl/tk interface. Since all MBone tools provide atcl/tk
interface, the send command is used to communicate
with the media services. The media service monitors
directly access the media service data structures where
statistics information is stored. A set oftcl/tk procedures,
employing the send command, is used to retrieve these
data structures. The data structures mainly comprise
media service related information (e.g. sending rate,
receiving rate, loss rate and bandwidth usage) that has
been computed by the media services by means of the
sent and received RTP packets. The retrieved data is finally

written into the corresponding tables of the COMMA
database.

5.4. User interface

The COMMA user interface is mainly split into two parts.
The first part provides a graphical interface for the connec-
tion management (Fig. 6). It is employed by the session
initiator who creates a session specific invitation message
where he specifies the list of the invited users and the media
services to be used for the session along with their initial
QoS values.

The second part provides a graphical user interface for the
session management (Fig. 3). It is employed by all session
participants to control the QoS of the various media
services. The slider of a media service indicates, for a
selected participant, the service quality the user wants to
receive from that participant. If the user himself is selected
in the participant list, the slider indicates the averaged
quality requirements of the other session participants. The
quality meter displays the currently received quality for a
selected participant. If the user himself is selected in the
participant list, the quality meter displays the current send-
ing quality. For each media service the quality display
ranges from zero to five. Level zero indicates that the
service is not being received. The other levels relate to
the quality rating presented in Section 3.

5.5. Connection manager

The COMMA prototype employs Unix sockets [23] in
order to provide connection management functionalities.
With the invocation of a COMMA, the connection manager
is initialized and enters an idle state where it can send
invitations or wait for invitations. Thus, the relationship
between connection managers can be characterized by a
peer-to-peer model. Since the underlying communication
primitives are Unix sockets that follow the client/server

Fig. 6. User interface for initiating a cooperative session.

358 M. Alfano/Computer Communications 21 (1998) 350–361

paradigm, this specifically means that a connection manager
may act at the same time as a client and as a server.

5.6. Service manager

The COMMA service manager provides functionality
for the other COMMA components, mainly for the QoS
mapper/controller, in order to start and stop media services,
and to set and get media service parameters.

5.7. QoS mapper/controller

The QoS mapper/controller is mainly split into a QoS
mapper and a QoS controller. The core functionality and
design of both components have already been discussed in
the previous two sections since the mapping and control
aspects represent a crucial part of the CME architecture.

5.8. Resource monitor/controller

In Section 2 we outlined the tasks of the resource
monitor/controller. They mainly comprise monitoring and

controlling host and network resources. In the experimental
prototype, however, the resource monitor/controller only
monitors the CPU load of each media service and the idle
CPU by employing the iostat BSD Unix tool. The consump-
tion of network resources has not to be monitored since
this task is already performed by the media service moni-
tors. In the prototype, media service processes run under the
time-sharing class. By employing the priocntl/priocntl_set
library functions, the resource monitor/controller dynami-
cally assigns process priorities to active media services.
Although this mechanism allows to privilege certain pro-
cesses, it does not offer QoS guarantees in absolute terms.

6. First experiments with the COMMA prototype

We now present the results of a first set of experiments
that we executed to test the control mechanism of the
COMMA prototype. The main focus was on the video
service because it is the media that entails the higher
resource consumption. We considered an environment
for world-wide collaboration with limited but guaranteed

Fig. 7. Results of a set of experiments carried out on the COMMA prototype.

359M. Alfano/Computer Communications 21 (1998) 350–361

network resources. We used the MAY (Multimedia Appli-
cations on Intercontinental Highway) network, an ATM net-
work (with the IP protocol implemented on top of ATM)
that connects North America to Europe [26]. We executed
the experiments at the International Computer Science
Institute in Berkeley (where the COMMA prototype was
developed) and set-up a loopback in Germany thus obtain-
ing a world-wide ATM link with a fixed transmission rate
of 1.5 Mb s¹1.

As a sending host, we used a Suny sparc20 workstation
equipped with a Parallaxy video board. This video board
supports JPEG compression in hardware. Thus, we could
vary the video frame rate in a wide range without consum-
ing a lot of CPU resources. On the receiving side, we used a
Suny sparc5 workstation with a Sun Videoy board. This
video adapter does not provide the same hardware support
as the Parallax board, therefore the decompression has to be
done in software and this requires a lot of CPU resources.

We transmitted video (with a slow-motion degree of
movement) by means of the video service (vic) of the
COMMA prototype. While changing the requested quality,
we observed the received quality, the CPU consumption
on the receiving host and the transmission rate of the
ATM network. The CPU consumption was provided by
the monitoring part of the COMMA prototype and the trans-
mission rate of the ATM network was measured by means
of the management tools of the local Synopticsy ATM
switch.

By varying the requested quality from one to five, we
obtained the results shown in Fig. 7. The first graph shows
the received quality vs. the requested quality. The second
graph shows the required CPU share for the different quality
requests and the actual provided share. The third graph
shows the required network bandwidth for the different
quality requests and the actual provided bandwidth. On
computing the received video quality, we considered
slightly more important the temporal quality. Thus, we
used the following expression:

Video_Q¼ 0:6 frame_rateþ 0:4 resolution

Up to a requested quality of four, the resources were suffi-
cient to supply the requested quality level. For a requested
quality of five, both the CPU of the receiving host and the
network became saturated. Thus, without any control
mechanism, the receiver experienced a dramatic reduction
in the received frame rate (0.5 fps) and, hence, a received
quality level of two (the resolution did not have the same
reduction as the frame rate). By applying the control
mechanism, we did not experience the big decrease in the
received frame rate because the control mechanism set
the sending frame rate and resolution to the proper values
(16 fps, 55%) so that the resource consumption stayed on
the borderline of the saturation zone.

Note that the curve related to the control mechanism
is averaged. The received quality kept oscillating around
the average value because the control mechanism kept

decreasing and increasing the sending frame rate and
resolution depending on whether it was sensing losses
or not. Although we did not investigate this issue any
further, a more detailed analysis should be carried out in
order to examine the potential instabilities of the control
mechanism.

These experiments only consider one of all the possible
scenarios. They mainly show how the control mechanism
that has been implemented in the COMMA prototype works
for a particular case. Of course, the simple control mechan-
ism presented here can be improved and a more complete
set of experiments could give suggestions on the way to
proceed. Nevertheless, even in the case the control mechan-
ism is changed, the structure of the CME and its components
would mainly remain the same thanks also to the CME
modularity.

7. Conclusions and future work

In this work, we presented the architectural details of a
CME that we have developed in order to help the user to
set-up and control a cooperative multimedia session. In
particular the QoS mapping and the QoS control mechanism
have been discussed. We also presented an experimental
prototype of a COMMA that provides video, audio and
white board services. Finally, we presented the results of
a first set of experiments carried out on the experimental
prototype.

The work presented in this paper, to our best knowledge,
is one of the first attempts in creating an integrated
architecture for QoS control of a cooperative multimedia
environment that spans from the user level down to the
resource level. There are still different open issues that
require further investigation. Among them, a better under-
standing of user requirements is necessary in order to eval-
uate whether the generic user is comfortable with the quality
levels introduced here. In particular, it is important to
understand whether a user should have the possibility
to express more than one requirement for a media service,
e.g. for video he could express his requirements for tem-
poral quality (frame rate) and spatial quality (picture reso-
lution) separately. The user requirements should also take
into account the possible relationship between different
media as in the case of audio/video synchronization. More
work is required in mapping user requirements into media-
service parameters and system resources. Other service and
resource parameters should be taken into account beside
the ones already considered here and their influence on
the media-service quality should be evaluated. More work
also needs to be done for the control mechanism. In parti-
cular other scenarios should be considered beside the one
that assumes that a user can control host resources but not
network resources. We plan to investigate how to control the
different resources in an integrated way in order to guaran-
tee that a user obtains the service quality he is requesting.

360 M. Alfano/Computer Communications 21 (1998) 350–361

Acknowledgements

This work has mainly been developed during my stay at
the International Computer Science Institute in Berkeley.
Thanks go to Nikolaos Radouniklis and Rolf Sigle who
respectively helped in the implementation of the COMMA
prototype and in the execution of the experiments on the
prototype.

References

[1] V. Jacobson and S. McCanne, vat – LBNL Audio Conferencing Tool
On line description, http://www-nrg.ee.lbl.gov/vat/.

[2] V. Jacobson and S. McCanne, wb – LBNL Whiteboard Tool Online
description, http://www-nrg.ee.lbl.gov/wb.

[3] S. McCanne, and V. Jacobson, vic: A flexible framework for packet
video Proc. of ACM Multimedia’95, San Francisco, CA, November
1995, pp. 511–522.

[4] G. Dermler, et al., A negotiation and resource reservation protocol
(NPR) for configurable multimedia applications, Technical Report 11/
95, Fakultät Informatik, University of Stuttgart, December 1995.

[5] Lucent Technologies Multimedia Communication Exchange Server
(MMCX) Online description, http://www.lucent.com/Business-
Works/olc/product/mmcx.html.

[6] K. Nahrstedt and J.M. Smith, The QoS Broker, IEEE Multimedia 2 (1)
(1995) 53–67.

[7] E. Schooler, Case Study: Multimedia Conference Control in a Packet-
switched Teleconferencing System, Journal of Internetworking:
Research and Experience 4 (2) (1993) 99–120.

[8] H. Schulzrinne, H. Dynamic configuration of conferencing appli-
cations using pattern-matching multicast, Proc. of NOSSDAV’95,
Durham, April 1995.

[9] D. Ferrari et al. Network support for multimedia — a discussion of
the Tenet approach, Computer Networks and ISDN Systems 26 (1994)
1267–1280.

[10] L. Zhang et al., RSVP: A new ReSerVation Protocol, IEEE Network 7
(1993) 8–18.

[11] D.P. Anderson, Metascheduling for continuous media, ACM Trans-
actions on Computer Systems 11 (1993) 226–252.

[12] C.J. Van den Branden Lambrecht and O. Verscheure, Perceptual
quality measure using a spatio-temporal model of the human visual
system, Proc. SPIE Int.l Symp. on Visual Communications and Image
Processing ’96, Orlando, FL, March 1996.

[13] A. Basso, et al., Study of MPEG-2 coding performance based on a
perceptual quality metric, Proc. PCS 96, Melbourne, 1996.

[14] W.R. Daumer, Subjective evaluation of several efficient speech
coders, IEEE Trans. on Communications, (1982) 655–662.

[15] W.C.Treurniet and L. Thibault, Perceval — A model for objective
perceptual assessment of audio On line publication, http://
www.crc.doc.ca:80/crc/branches/DRB/list.html.

[16] ITU-R Recom. BT.500.7. Methodology for the subjective assessment
of the quality of television pictures.

[17] L.C. Schreier, and M.B. Davis, System-level resource management
for network-based multimedia applications, Proc. of NOSSDAV’95,
Durham, April 1995.

[18] M. Alfano, Scheduling features in distributed systems, Proc. of the
SBT/IEEE International Telecommunications Symposium, Rio de
Janeiro, August 1994, pp. 52–56.

[19] M. Alfano and R.A. Radouniklis, cooperative environment with QoS
control: Architectural and implementation issues, ICSI Technical
Report TR-96-040, September 1996.

[20] B. Kernighan, and D. Ritchie, The C Programming Language, 2nd
edn., PTR Prentice Hall, Englewood Cliffs, NJ, 1988.

[21] J.K., Ousterhout, Tcl and the Tk Toolkit, Addison–Wesley, Reading,
MA, 1994.

[22] Hughes Technologies, Mini SQL: A Lightweight Database Engine,
Release 1.1, Online Manual, http://Hughes.com.au/product/msql/
manual.htm, January 1996.

[23] D. Comer, Internetworking with TCP/IP, Vol. I, Principles, Protocols,
and Architecture, PTR Prentice Hall, Englewood Cliffs, NJ, 1991.

[24] ISO/IEC 9075: Information Technology — Database Languages —
SQL, 1992.

[25] H. Schulzrinne et al., RTP: A transport protocol for real-time applica-
tions, IETF RFC 1889, January 1996.

[26] Multimedia Applications on Intercontinental Highway (MAY) On
line description, http://www.icsi.berkeley.edu/MAY/index.html

Marco Alfano received his Laurea degree in Electronic Engineering
from the University of Palermo, Italy, in 1988 and in the following two
years he was a grant holder of the Italian National Council of Research
(CNR) to lead research on computer networks. From 1992 to 1994 he
worked at the Universities of Palermo and Catania, Italy, and at the
University of Waterloo, Canada for a Ph.D in electronics, computer
science, and telecommunications engineering. The Ph.D work mainly
dealt with the design of a scheduler for distributed applications with
user requirements. From 1995 to 1996, he was at the International
Computer Science Institute in Berkeley, USA, where he worked on
QoS for distributed multimedia applications and management of
high-speed networks. He is currently a senior researcher at CSELT
in Torino and the Director of the centre for Communication Studies
‘‘Anghelos’’ in Palermo. His research interests include communication
systems, distributed computing and QoS for multimedia applications.

361M. Alfano/Computer Communications 21 (1998) 350–361

